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ABSTRACT

Heat transfer and hydrodynamic performance of eight dif-
ferent geometrically enhanced tubes of different metals was
determined. Results were compared to a 25.4 mm (1.0 inch) 0D,
smooth stainless steel tube.

Steam at about 21 kPa (3 psia) was condensed on the outside
surface of each enhanced tube, horizontally mounted in the cen-
ter of a dummy tube bank. Each tube was cooled on the inside
by water. The overall heat transfer coefficient was determined
directly from experimental data. The inside and outside heat
transfer coefficients were determined using the Wilson plot
technique. The cooling water pressure drop was measured inside
the tube and converted to the friction factor in the enhanced
section.

The overall heat transfer coefficients of the enhanced tubes
were increased as much as 1.9 times, and the corrected pressure
drops of the enhanced tubes were as large as 4 times the corre-
sponding smooth tube value for the same cooling water velocity.

The helix angle should be 45° to 60° on the inside surface
and 90° on the outside surface of the tube to obtain maximum

inside and outside heat transfer coefficients.
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NOMENCLATURE

Area (mz).

Cross sectional area of test section (mz),
/ volume/length/,

Nominal surface area (m?), [ A, =TD L. 7 -

Specific heat (kJ/kg-OC).

Diameter (m).

Tube groove depth (mm).

Friction factor.

Flow rate per unit area (kg/m2 sec),

Gravitational constant (kg m/N secz).

Heat transfer coefficient (W/m2 oC).
Helix angle.

Latent heat of vaporization (W sec/kg).

j factor in Colburn Analogy éfj-StPr2/3;7.
Thermal conductivity (w/m°c) .

Pressure loss coefficient due to abrupt entrance
and exit area changes.

Length of test tube (m).
Log mean temperature difference (°C).
Mass flow rate of cooling water (kg/sec).

Slope of Wilson Plot output from linear
regression program.

Nusselt number / Nu=hD/k_7.
Tube spiral pitch (mm).

Pressure (kPa),
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TPF Tube performance factor (2j/f).

TRAN1 Heat transfer rate from condensation flow
rate (kW) .

TRAN2 Heat transfer rate from cooling water mass
! . flow rate (kW).

1 u Water velocity (m/sec).
Volume (m3).

Pumping power (kW)

x axis input to linear regression program,

< Mé <

y axis input to linear regression program.

Greek Symbols

. A Differential.
‘ : U Dynamic viscosity (kg/m hr).
; P Fluid density (kg/m3)

‘ 14

9] Overall heat transfer coefficient (W/mzoc)

“ E° |
ot e s
Prandtl number gucp/k).
Wetted perimeter (m).
Heat flow rate (W)
Volumetric flow rate (m3/sec).
Thermal resistance (m2°C/W).
Re Reynolds number (DG/u ).
st Stanton number (Nu/RePr).
t Wall thickness (mm).
T Temperature (°C).
Tc Temperature of cooling water °c).




Subscripts
a Augmented.
b Fluid at the bulk temperature in %c.
br Fluid at the bulk temperature in k.
c Corrected.
con Condensation.

} cn Contraction.
e Expansion.
ext External.
h Hydraulic.
i Inside or inlet.
1l Liquid.

f m Measured.

n Nominal.

‘ o Outside or outlet.
s Smooth.
sat Saturation.
ts Test section.
v Vapor.
w Wall.
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I. INTRODUCTION

A. BACKGROUND INFORMATION

. Heat exchangers can be designed to be smaller in size
which can result in a savings in costs by using enhanced
heat transfer surfaces. Enhanced heat transfer methods would
also permit lower condenser pressures to be achieved, thus
reducing operating costs by saving fuel.

Search 4—L47 conducted an investigation into present con-
denser design processes and into the feasibility of enhancing
heat transfer in Naval condensers. He found that the design

: - of condensers is very conservative. Search also concluded
that size and weight savings on the order of 40 percent could
be realized depending on the heat transfer enhancement method

used.

In recent years many research efforts have been directed
to the study of heat transfer enhancement techniques and their
application to heat exchanger design. Bergles 1'2, 3_7 has
summarized extensive works in both single phase and two phase
heat transfer enhancement.

Palen, Cham and Taborek éfl_7 published a report for Heat
Transfer Research in which they compared the steam condensing

¢ performance characteristics of Turbotec tubing and plain tubing,
‘. ' The test tubes were 25.4 mm outside diameter with the plain
tube made out of 90-10 copper-nickel and the Turbotec tube

made out of 97.5 percent copper. The test condenser had a

| total of 196 horizontal tubes with 16 vertical rows. The steam

pressure was varied between 379 kPa and 724 kPa. The cooling
17
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water velocity varied between 0.457 and 1.219 m/sec. To
insure filmwise condensation, all tubes were baked in a large

oven at 260° for one hour to remove residue. The experimen=-

tal results show that for a given Reynolds number the friction
factor for a Turbotec tube is from 10 to 15 times that of a
smooth tube. On the basis of total bundle performance, the
overall heat transfer rate was increased by a factor of 2.5
using the Turbotec tubes compared to the plain tubes.
Eissenberg £f3_7, performed an extensive study of conden-

ser tube heat transfer coefficients using a multi-tube bundle.
Watkinson et al. / 6_/ conducted tests on 18 Noranda Forge Fin
tubes. Catchpole and Drew £f7;7 conducted exveriments on five

radially grooved tubes.

Young, Withers and Lampert / 8_/ conducted bundle com-
parison tests of smooth tubes versus Korodense tubes manufac-
tured by the Wolverine Division of Universal 0il Products.
These tests were conducted at two different steam temperatures
of 37.8°C and 100°C. Two sizes of tubes were tested: 15.9 mm
outside diameter copper tubes and 25.4 mm outside 90-10
cooper-nickel tubes. The cooling water velocity through each
tube was varied from about 0.91 m/sec to 1.98 m/sec. The
overall heat transfer coefficient for the 25.4 mm Korodense

tube was 2.2 times that of the smooth tube, while the 15.9 mm

[}
l . Korodense tube's value was 2,7 times that of the smooth tube,

Beck /9 7 designed a test facility at the Naval Post-

'
)

A y ' graduate School that permits the testing of a single, hori-
]

zontally mounted, condenser tube. Completion of construction

18
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and testing of this facility was done by Pence Zf10;7. He

e ] 1:«#-.<M -y

conducted his tests using a smooth copper-nickel tube. The

results of Pence's tests indicated that the facility was

technically sound.

Reilly éfl{J? conducted tests on enhanced tubes manufac-
tured by General Atomic Company. Three different spirally
fluted aluminum tubes were tested. The tubes were 15.9 mm
in nominal outside diameter. Results were compared to 15.9
mm outside diameter smooth copper-nickel and aluminum tubes.
Steam at a pressure of 20.7 kPa was supplied to the test con-
denser. The test tube was cooled by water on the inside at
velocities of 0.91 to0 7.62 m/sec. The overall heat transfer
coefficients of the enhanced tubes were as large at 1.75 times
the corresponding smooth tube value for the same mass flow rate
of cooling water. The inside heat transfer coefficients were
observed to increase by about a factor of 3 while the outside
heat transfer coefficients decreased by 10 to 29 percent when
compared to smooth tube values.

Fenner / 12_7 conducted tests on ten enhanced tubes of

different alloys. The test tubes were 15.9 mm in nominal

outside diameter. Results were compared to 15.9 mm outside ]
diameter smooth copper-nickel tubes. Steam at about a pressure

of 20.7 kPa was condensed on the outside surface of each en-

]

' . hanced tube, horizontally mounted in the center of a dummy tube
) bank. Each tube was cooled on the inside by water at velocities
]

of 2.7 to 7.6 m/sec. The overall heat transfer coefficients

o 19
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of the enhanced tubes were as large as 2 times the correspond-
ing smooth tube value for the same mass flow rate of cooling

water.

B. GOALS OF THIS WORK
In view of the developments previously discussed, the
purpose of this thesis was then:
1. To determine the heat transfer and performance character-
igtics of larger diameter enhanced tubes,
2, To determine the pressure drop characteristics of these
tubes,
3. To compare each type of enhanced tube's performance to

smooth tube operation.

20
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II. EXPERIMENTAL FACILITY

A. TEST FACILITY

The test facility is shown in Figure 1. The layout was
designed by Beck / 9_7 and built and tested by Pence / 10_7.
A detailed description of the components used in the various
systems may be found in these reports. Only a general de-
scription of the various systems will be found within this
report. Rotameters, thermocouples and the pressure trans-
ducer were calibrated. The calibration procedures of com-

ponents requiring calibration are outlined by Reilly 4f11;7.

B. STEAM SYSTEM

The steam system is shown in Figure 2. For these tests
the steam was provided from the house-steam supply. Steam
at 34.5 kPa was used for all runs. Steam could be routed
around the test condenser to the secondary condenser via the
bypass valve (MS-4). The water contained in the steam is re-
g moved by the steam separator. The steam continues through
the throttle valve (MS-3) where the pressure is reduced. The
steam next passes through the desuperheater wherein water from
the feed system in injected in order to remove some of the

sensible heat from the steam. The steam continues into the test

i - condenser where part of it is condensed on the test tube. The
steam not condensed is collected in the vapor outlet and sent
to the secondary condenser wherein the latent heat of vapori-

' zation is removed. If the house steam fails or if less steam

21




is required, the boiler can be used to provide steam. The
boiler is an electrically heated Fulton Boiler which produces

saturated steam at 45.4 kg/hr (13.8 xPa). The steam leaves

3 _ the boiler through the boiler-isolation valve (MS-1). All
| steam lines (except the section downstream of MS-3) were in-

sulated with 25.4 mm thick fiberglass insulation.

C. TEST CONDENSER

The test condenser is shown in Figures 3, 4, and 5. Steam
enters via the top. It then passes through the expansion
section over the baffle separators, and through three layers
of 150 mgsh screen and a flow straightener into the tube bundle,
The condensate collects at the bottom of the test condenser
where it flows through two 12.7 mm diameter lines to the test
condenser hotwell. The viewing windows, shown in Figures 3
and 4, allow viewing of the condensation process. Pyrex glass
windows 12.7 mm thick were used during the experiments.

The tube sheet arrangement is as shown in Figure 5. There
are six 25.4 mm OD, stainless steel (AISI 304) tubes arranged
in a typical condenser configuration, with a spacing-to-diameter

ratio (S/D) of 1.5, around a single test tube.

The test tube is the only tube with water passing through
it. This arrangement was selected to best simulate the steam
flow conditions in an actual condenser. The test condenser is
insulated with a 51 mm thick sheet of Johns-Manville Aerotube

insulation.

A
vl
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D. CONDENSATE AND FEEDWATER SYSTEMS

The condensate and feedwater systems are éhown in Figure 6.
The test condenser hotwell collects the condensate from the
test tube, while the secondary condenser hotwell collects the
condensate from the secondary condenser, test condenser hotwell
and desuperheater. Valve C-1 allows isolation of the test
condenser hotwell from the secondary condenser hotwell. The
condensate is pumped from the secondary condenser hotwell to
the feedwater tank or house=-steam return. When using house-
steam, the feed pump should be closed.

If the boiler is used, the feed pump is operated. The
feed pump routes the water from the feedtank to the boiler via
a solenoid-controlled valve, a hot-water filter and a boiler
isolation valve. The feedwater temperature is maintained

between 54.4°C and 60.0°%C by thermostat controlled heaters.

This reduces fluctuations in the boiler output and provides
a source of water at a temperature near saturation for the
desuperheater. The condensate and feedwater lines are insulated

with 25.4 mm thick Johns-Manville Aerotube insulation.

E. COOLING WATER SYSTEM

The cooling water system is shown in Figure 7. The water
is pumped from the supply tank via a 5.6 kW pump through a
filter and cooling tower. The cooling water for the test con-
denser also is pumped via a 6.7 kW pump. The water is routed
to the test tube via two rotameters. The bypass valve CW-4
is provided to permit an increased volume of water to flow

through the supply tank.

23
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The dry cooling tower was constructed using four large
plate/fin radiators connected in series., The water was
directed through the radiators and outside air was forced
over the cooling surface by a centrifugal fan.

The system piping was reduced from 63.5 mm to 25.4 mm
diameter at a distance of approximately 1.5 m ahead of the test
condenser to insure fully developed flow at the test-tube en-
trance. The cooling water lines were not insulated.

F. SECONDARY SYSTEMS

1. Desuperheater

The desuperheater removes sensible heat from the super-
heated steam by injecting feed water at between about 40°C and
60°C. The feedwater flow into the desuperheater is controlled
by valve FW-4 and measured by a rotameter. The excess water
is collected in the secondary condenser hotwell.

2. Vacuum System

The vacuum system is shown in Figure 8. The vacuum in
the test condenser is maintained by a mechanical vacuum pump
and a vacuum regulator which induces an air leak into the vacuum
line. A cold trap at the inlet of the vacuum pumo forces in-
coming vapor to pass over a system of refrigerated copper coils.
This is to remove entrained water from the vacuum line and pre-
vent moisture contamination of the vacuum pump o0il. The vacuum
pump outlet is vented through a root exhaust fan to avoid a
health hazard from breathing any oil vapor that may be exhaust-

ed by the pump.
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G. INSTRUMENTATION

l. Flow Rates

Fulton rotameters were used to measure the flow rate

of water in the cooling water system and the desuperheater.
2, Pressure

Several different types of pressure measurement de-
vices were used in this facility. They were: a Bourdon tube
pressure gage which was used to measure boiler pressure, a
compound gage which was used to measure the house steam pres-
sure, an absolute pressure transducer and a 1.0 m mercury
manometer which were used to measure the test condenser pres-
sure, and a 3.6 m mercury manometer which was used to measure
the cooling water pressure drop across the test tube.

3. Temperature

There were two types of thermocouples used in this
facility., Stainless steel sheathed, copper-constantan thermo-
couples were used as the primary temperature monitoring devices.
Table 1 lists the locations monitored. Teflon coated, copper=-
constantan thermocouples were used as secondary measuring de-
vices. Table 2 1lists the locations monitored using these
thermocouples.

4. Data Collection

An autodata collection system was utilized to record
and display the temperatures in degrees Celsius obtained from
the primary thermocouples and to record and display the pres~
sure in cm.Hg inside the test condenser. See Table 1 for

channel numbers of the temperature monitoring devices.
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A 28 channel digital pyrometer was utilized to dis-
play the temperatures obtained from the secondary thermocouples.

See Table 2 for channel numbers.

H. TEST TUBES

The enhanced tubes tested during this study were manufac-
tured by several companies. Two special tubes were manufac-
tured by General Atomic Co. They are made of stainless steel
and have helical flutes on both the inside and outside sur-
faces, which are formed by running a flat strip through rollers
which cause the flat surface to become wavy. The wavy strip
is then spirally wound and seam-welded to form a tube.

Two types of Turbotec tubing were made by the Sniral
Tubing Corporation. These tubes are three-start, helically
fluted, with flute pitch determining tube type. All Turbotec
tubes were manufactured of coprer. One of these tubes was
manufactured with micro grooves,

Two tubes were manufactured by Yorkshire Imperial Metals
Co. These tubes are three-start, and were manufactured of
90-10 copper-nickel.

Also one special Hitachi tube and a special German tube
were tested during this study.

The test tubes which were tested are shown in Figures 9,

10, and 11.
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I1I. EXPERIMENTAL PROCEDURES

A, INSTALLATION AND OPERATING PROCEDURES

1. Preparation Of Condenser Tubes

Prior to any run, the condenser tubes had to be prop-
erly prepared to insure filmwise condensation. The cleaning
procedures are listed in Appendix A. The wall thermocouples
also had to be prepared and installed in such a manner as to
reduce the possibility of introducing errors.

2, System Operation And Steady State Conditions

Pence / 10_7 develoved and Reilly /711 7/ modified
a detailed set of operating procedures for this system. They
are included, with minor changes in this report as Appendix B.

In general it takes about two hours from initial
light off until steady-state conditions are established. After
installation of the test tube is complete, the vacuum system
can be activated. The data collection system is programmed,
including setting the date and time in accordance with Refer-
ence / 13_7/. The cooling water system is placed in operation.
Both rotameters are set at about 50 percent flow to allow
adequate venting of both legs of the 3.66 meter manometer,
The rotameters are then reset to the lowest flow point for
system operation. The steam system can now be placed into
operation.

Steady-state conditions must be established prior

to data collection. To determine this, two parameters were

monitored. They were the cooling water inlet temperature and




the steam vapor temperature. The cooling water inlet tem-
perature did not rise more than 0.6°C/hr. The steam vapor
temperature did not vary more than 3.3°C between the six

vapor thermocouples in the condenser. The change in temper-
ature of an individual thermocouple never exceeded 0.3 ©c/min.
The steaming conditions and cooling water flow conditions
remained constant while establishing steady-state conditions.
The time for the system to stabilize was generally about one
hour which is in agreement with that reported by Reilly £f11;7
and by Fenner / 12 7.

3. Maintenance Procedures

The condenser glass window, the inside surface of the
condenser and the dummy tubes of the condenser required clean-
ing after each run to insure filmwise condensation. The sec-
ondary condenser hotwell required cleaning after approximately

five runs.

B. DATA REDUCTION PROCEDURES
Data obtained in this thesis were evaluated using the

smooth inside diameter and hydraulic diameter. As mentioned
in Reilly /11 7, in evaluating the data obtained from the
heat transfer runs, two objectives were established. The
first of these was to present the data in such a way as to
make it immediately useful to the designer. The second ob-
jective was to establish a reduction scheme that would allow
the comparison of enhanced tubes based on their actual in-

ternal surface areas.
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1. Reduction Based On The Smooth End Diameter, D

i

As mentioned above, to meet the condenser de;iqner's
needs, it was felt that the data should be reduced using the
smooth end diameter. This would allow a direct substitution
of an enhanced tube for a smooth tube and is especially im-
portant when considering the comparison of a wide variety of
tube types. In addition, a nominal area was defined. The
nominal area was based on the outside surface area of a smooth
tube /A =7D L. _ 7.

Appendix C, the sample calculations, is a complete

listing of the equations used to evaluate the data. Appendix

D is a derivation of the probable error in the data reduction

equations, followed by a sample error analysis for the 45°

helix angle (HA) General Atomic tube, Run 10,
a. Overall Heat Transfer Coefficient
The method employed to arrive at the overall heat
transfer coefficient is straightforward and similar to that
employed by many researchers in the past.
The heat transfer rate to the cooling water is given by

Q= mc, (Te, = Tcy) (1)
The heat transfer rate from the steam is given by

Q= ﬁlcon [cpv (Tv'Tsat) + hfg + cp(con)(Tsat'Tcon)](z)
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The heat transfer rate can also be found from the overall

heat transfer coefficient by

Q = U, A LMTD (3)
where
(Tv-Tci) - (Tv-Tco)
LMTD = (4)
1 T,~Tc;
Tv-Tco

After combining equations (1), (3), and (4) it is found that

me T -Tc
U= =L |—X2 J (s)
An Tv-Tco

A schematic illustration of the procedures to arrive at
Un is shown in Figure 12,
To remove the effect of the tube wall material,

a corrected heat transfer coefficient is found from

A (6)
T Rw
n
where
A_In (r_/x,)
Rw = n O i (7’
27Tkw Leg

b. Inside Heat Transfer Coefficients
The Nusselt number on the inside is found from
the Sieder Tate relationship, found in Holman /" 14_7 as:
h;Dy 0.8,.1/3 0.14
Nu = === = C;Re ""Pr ( Y/ (8)
kp
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In the above equation, ci is referred to as the Sieder Tate
constant. The remainder of the right hand side of the above

equation /~ Rre®: 8py1/3

(;14M~)°’14 ;7 will be referred to as
the Sieder Tate parameter, and the procedure for arriving at
this value is illustrated schematically in Figure 13. The
Wilson plot is used to arrive at the value of the Sieder Tate
constant, The Wilson plot was developed in 1915 by Wilson
Lf15;7, and has been modified by several researchers. The pro-
cedure used in this research was developed by Briggs and Young
/16_7.

The Wilson plot is merely a plot of l/Un versus the
inverse of the Sieder-Tate parameter which should be a straight

line when varying the cooling water velocity. The reasoning

behind the Wilson plot can be seen in the following develop-

ment.
The overall heat transfer coefficient can be written as:
1
v, = = (9)
(o) 1l
5T + Rw +-H-
Di i (o)

The inverse of this equation (9) is:

D
d .0 + Rw + 1o (10)
Up  Djhy h,

If (Rw + %— ) is assumed to be constant* and equation (8)
o

is solved for hi in terms of the Sieder-Tate parameter,

*
Actually, h° is not constant. As cooling water
velocity (v) increases then h° decreases slightly. ]
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equation (10) can be rewritten as:

Lo=Do_ pem08p,ml3 (pyyy )70 48 (11)
Un  Cikp

1
where B = Rw + -E;

The form of equation (l1l) is then exactly that of a straight

line,
Y = Mx + B (12)
where:
1l
Y= (12a)
n 4
X = 1 , and (12b)
Sieder Tate parameter
Do
M= {(l12c)
Cikp

The values of 1/Un and the Sieder-Tate parameter are
obtained by varying the water velocity and holding the other
parameters, such as water temperatures, steam vapor temperatures

and condenser tube wall temperature, nearly constant. When

1/u_ is plotted versus Re'o‘apr'l/3(/1/,Uw)-°'l4 a linear
regression subroutine éf 17_7 fits these points to a straight

line and then solves for the slope, M, and the intercept, B.

i et A b et e n

Knowing the slope, M, the Sieder Tate constant, Ci' can be
found from equation (l2c). The inside heat transfer coefficient,
hi' is then found from equation (8).
Once the inside heat transfer coefficient, hi' is
known, then the Nusselt number can be solved for in equation

(8), to find the Stanton number,
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st =S4 __ . R (13)
RePr c G
p
The cooling water proverties go,lj, k, cp, Pr) are
obtained as shown in Appendix C. Appendix C also demon-

strates the procedure for arriving at the water viscosity
evaluated at the condenser tube wall, M
c. Outside Heat Transfer Coefficient

The outside heat transfer coefficient, ho' can

now be found from equation (9). Figure 14 schematically
illustrates the various steps cutlined above.

d. Friction Factor

The friction factor for the test tube is found

from:

- Y (AP, ) (2g9)
fts Pb ts 2c (14)
4(Lts/Di) G

Apts is the pressure drop in the enhanced section
of the test tube. The measured pressure drop, Z&Pm is taken
over the entire tube length. Since the enhanced section is
only 0.972m long, the pressure drop over each of the smooth
ends must be subtracted off of the measured pressure drop.
This is done by calculating the friction factor in the smooth

ends using:

£, = g;°:’9 for Re = 30,000 (15)
or
£ w2 for re — 130,000 (16)
s Re’*
33
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The smooth-end-section pressure drops can then be calculated

from,

2
(£.) (4) (L_/D;) (G”)

() (29,,)

The cross sectional flow area of the enhanced
section of the test tube is different from the cross sectional
flow area of the smooth end of the tube. Therefore, the water
undergoes an expansion and a contraction at the exit and en-
trance to the enhanced section of the tube. Associated with
the expansion and contraction processes are certain irreversible
losses which cause additional pressure drops to occur. These
pressure drops also should be subtracted off of the measured
pressure drop and are estimated following the calculational

procedure as shown in reference / 18_/:

2
Ape/cn = PV (K, + K) (18)

Since the variations in the contraction and expansion co-
efficients K, and Ke are small over the range of Reynolds
numbers used, an average of these values was used in
equation (18).

Therefore, £&Pts is found using equations (17)
and (18):

AN -é&pm-Aps-Ape/cn (19)

and the friction factor for the test section is determined

according to equation (14).
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e. Performance Criteria
To compare the enhanced, or augmented tubes with
the smooth tube, it was necessary to use some meaningful per-
formance criteria. The following procedures are similar to
those outlined by Reilly /11 7 and Fenner / 12_7.

(1) Colburn Analogy. Use of the Colburn Mialogy,

as found in Reference / 19_7, provided one such criterion.
Using this analogy, the heat transfer performance is compared

to the friction factor performance as seen by the reaction:

3 = ster?/3 = £ (20)

(2) Surface Area Ratios. Bergles / 3_/ outlines

several performance criteria based on the inside heat trans-
fer coefficients by solving for the ratio of augmented to smooth
tube surface areas while holding various parameters constant.

(a) External Resistapce Equal To Zero. 1If
the external thermal resistance is set equal to zero, and the
pumping power is allowed to increase, one such ratio is defined

by

A n Nug /e 3 sy )0+ 14

= = 173 0. 14
s h,  Nu/er/3uspu)

(21)

which assumes that Q, ﬁ, Di' Tb and LMTD. are constant, and
Roxt = Rw + 1/h° = 0. In equation (21) the augmented heat
transfer coefficient ha is the value hi referred to earlier.

During these tests, the LMDT was not really kept

constant, but was allowed to vary between 37 and 48°

c.
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In this situation, the flow velocities for the smooth and

augmented tubes are the same,
The area ratio defined by equation (21)
does not, however, take into account the increase in pressure ;
drop and hence the increase in friction factor caused by en-
hancement techniques. The increase in pressure drop can be
included when evaluating the performance of an enhanced tube
compared to that of a smooth tube. Bergles £f3;7 shows this
by defining an area ratio for constant pumping power as well
as for the conditions defined earlier.

The pumping power is given by:

 =(pv &) a (1) (52)

ch
Wp = ({;—c) (TDL) £v>

where 7IDL is the inside surface area for the tube in question.

By setting the pumping power of a smooth tube equal to the §

pumping power of an enhanced tube, it is found that:

3 3
Aa Vg fs . Res fs
As Va a Rea fa |

Notice, that in this situation of constant pumping power, the
flow velocities and hence Reynolds numbers are different for
the smooth and the augmented tube. In equation (23) the aug-
mented Reynolds number Re, and friction factor £, are the

values Re and fts referred to earlier,
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The heat flow rate is given by:
Q= hiAiLMTDi (24)
Since the heat flow is also assumed to be constant in both

the enhanced and smooth tubes, the area ratio can be found

1/3 0.14
A, hs Nu /Pr / ( p/pw
— = - I (25)
Ag ha Nu /Pr p/ﬂw)

Equation (23) can now be set equal to

equation (25) to show:

1/3

a, Nu/ert3pmu0 e,

= 51T —T— (26)
A Nu /Pr 173 ( p[ﬂw) Re

if Nug is replaced in the above equation

by the Sieder-Tate relationship as found in Holman /" 14_7 :
Nug = 0.027re O+ 8er/3(pyy 0014, (27)

and fs is replaced by equation (16)

£, - 0.04? . (16)
Resu 2

equation (26) can be solved for the smooth tube Reynolds

number in terms of the augmented conditions:

3
e o | _0-027f,Re,
‘ 0.046Nu, /Pr/ > ( y/) )

005
I } (28)
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In this expression,
G D, D.v
Res = S 2 = P—_is— ¢ and (29)
H 7
G D D.v
Rea = _a_i. = b—a. . (30)
B K

To find the area ratio, the procedure

begins by choosing a value of Rea. The related quantities
fa and Nua/Pr1/3(f14uw)°'14 are then found from experimental
data. Equation (28) is solved for Res, and knowing Res and
fs from equation (16), equation (26) can be solved for the
resulting ratio.

(b) External Resistance Not Equal To Zero.
Since a sizeable portion of the overall resistance in a naval
condenser could be caused by the wall resistance and the outside
thermal resistance, the area ratios as defined by Bergles / 3_7
should be expanded to include these external resistances., If
the heat flow is given by equation (3):

Q = U A, LMTD (3)

and thin tube-wall is assumed, then the external resistance
effects on the area ratio can be included in the analysis.
The wall thickness must be assumed to be small since the
nominal area is based on an outside diameter of the tube.
Invoking all of the assumptions made
earlier, then the results of the constant pumping power case

are again:

- __’;. (23)
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In addition, constant heat flow results

in:
Aa Us
_ a2 (31)
As Ua

As before, these two area ratios can be set equal, and it is

found that:

3
ii = EE =Ls§f_s_ (32)
As Ua Va fa

As mentioned by Search /"1 7, for smooth tubes, it is found
in general that the overall heat transfer coefficient can be

correlated by:

[ /
u.,= C Vg = F1F2F3C W/Vs (33)

C’ = empirically determined coefficient

F, = cleanliness correction factor

F, = material correction factor

F, = inlet water correction factor .

Therefore, C is a coefficieht which varies with tube size,
material and water inlet temperature. Also, from equation

{(16) , it is known that

£, = 0.046 (16) {
Res
When equation (16) and (33) are substituted into equation #

(32), together with the use of equation (29), the smooth tube

velocity can be found:
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3 1/5 172.3
£fv C D,
v = aa (f;[l> . (34)

(Ua)(0.046)

As done in the earlier case, the procedure here is to

select a velocity in the augmented tube, Var Values of fa and
Ua are determined from experimental data, and vg can be found

from equation (34). Knowing \~ then equation (33) is solved

for Ug and equation (32) is solved for the area ratio.

In selecting the values of the constants

3 to substitute into equations (34), the following procedures

were utilized:
(1) Ua was corrected to 21.1°C coolant inlet temperature

using the procedure defined in Reference / 20 7.

{(2) The dynamic viscosities used were obtained in the data
reduction program at each flow point.

(3) C was determined by using the values of U and A ’
for smooth stainless steel tube in Run 9, and solving
C' in equation (33) with application of correction
factors defined in Reference / 20_/. For run 9, the
average value of C=2016 was computed. The value for
C' was not a constant over the range of flows observed;
therefore, an average value of C'=2922 was computed
and used.

i : 2. Reduction Based On The Hydraulic Diameter, Dy,
t
)

The reduction procedures for this method were similar
to the procedures used for the reduction based on Di’ The

major obstacle in obtaining meaningful results was in
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determining the enhanced section's geometry and, once de-

termined, how best to apply it to the available equations.
For General Atomic tubes, the cross-sectional area
and wetted perimeter information provided by General Atomic
Company was used. For Turbotec tubes, the volumes of the
enhanced sections were measured and, by using the length of
the enhanced section, the cross-sectional area was obtained.
The wetted perimeter was found by using a thin wire from an
enlarged view of the tube, Figure 15. The hydraulic diameter

was then found from:

= d2c_ (35)

Dh Pw
Similar problems were encountered in determining the wall
thickness and subsequent walt resistance.

To introduce this geometry into the equations used
to solve for the heat transfer coefficients, it is first
necessary to recall that the resistance to heat flow across
a tube is equal to the sum of the individual resistances as

shown earlier. Therefore,

1 + Rw + 1 (36)
AoUo tho Alnet hiAi
where:
Ao = Pwol:.ts (37)
Ai = P"iLts (38)
Amet = PbarI‘ts (39)
Pbar - (Pw°+Pwi)/2 (40)
4]
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By setting l/AOUO-l/AnUn, and multiplying through by A, allows
us to obtain the overall heat transfer coefficient based on

the same nominal geometry that was used in the plain-end re-

duction. The equation takes the form:

o = 1 + AoRw + Ao

AnUn Rb Amet Aihi

Equation (41) is solved exactly as was equation (10) in the

(41)

first section to obtain the Wilson plot. The inside and out-
side heat transfer coefficients are then obtained as they were
in the plain-end reduction except as modified by the different
goemetry.

Other reductions used are identical to the smooth end
* ) reduction scheme except as modified by different ceometry.

3. Data Reduction Comnuter Program

An existing computer program of Reilly / 11 7 for
reduction of data was modified to include heat transfer rate
equations (1) and (2). Details of the program may be found in
Reilly /711 7.
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IV. RESULTS AND DISCUSSION

A. INTRODUCTION

Figure 16 is the definition of helix angle, groove depth,
pitch, tube inside diameter, tube outside diameter and tube
wall thickness. Table 3 lists special characteristics of the
General Atomic, Turbotec and Yorkshire tubes. Table 4 lists
the various runs made and the corresponding tubes used during
these tests. Tables S5 through 13 contain all the raw data used
to evaluate the performance of the enhanced and smooth tubes.

Three runs were made for practice. For the stainless steel
smooth tube, six runs were made with different tube bundle lay-
outs as shown in Figure 17. The corrected overall heat trans-
fer coefficient versus cooling water velocity for the smooth
tube with different bundle configurations is shown in Figure
18. It was found that the corrected overall heat transfer
coefficient was different for every bundle configuration. The
highest corrected overall heat transfer coefficient was found

for configuration F. This configuration gives good steam flow

around the test tube when comparing with the other configura-

tions, and it was therefore used for testing the enhanced tubes.
During these tests, good filmwise condensation was obtained

except for the Turbotec tube (T-1l). Run 14 and Run 15 were

made with the same tube and the tube was cleaned three different

times. Filmwise condensation could not be obtained for the

Turbotec tube (T-1). The tube was then heated at 260°C for one

hour, and was tested again. Mixed condensation was obtained
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as seen from Figure 19. (For the conditions shown, the cooling
water velocity is 6.94 m/sec.) Notice that most of the
grooves are covered with condensate but there are some spots
on the grooves in the right side of the photographs. These
spots correspond to tiny drops on the surface.

Since a linear regression subroutine was used to obtain
the slope for the Wilson Plot, the heat transfer information
obtained was very much dependent on how well the linear re-
gression program could fit the data.

Table 14 through 22 contain all the results obtained,

based on the plain-end inside-diameter.

B. RESULTS BASED ON SMOOTH END DIAMETER, Di

1, Heat Transfer Coefficients

The.corrected overall heat transfer coefficients versus
cooling water velocity are shown in Figures 20 and 2l1. Tube
¥-1 shows an increase of about 56 percent, and tube Y-2 shows
an increase of about 51 percent over the smooth tube (S-1)
value at a cooling water velocity of 5 m/sec. Tube GA-1 shows
an increase of about 56 percent while tube GA-2 shows an in-
crease of about 24 percent at the same cooling water velocity.

As seen from Figure 21, tube T-2 shows an increase of
about 54 percent while the tube T-1 shows an increase of about
87 percent. The special tube G-1 shows an increase 6f about

18 percent while tube H=1 shows a decrease of about 40 percent.

Reilly £f11;7 reported experimental results of 15,88 mm

nominal outside diameter 45° HA and 30° HA General Atomic tubes.




Figure 22 shows comparisons of the corrected overall heat

transfer coefficients versus cooling water velocity for the

P 20.5 mm and 15.88 mm nominal outside diameter General Atomic
| tubes. As shown in Figure 22, larger diameter tubes have

% ' lower overall heat transfer coefficients. From Nusselt

Theory, ho otl/Dl/4. Therefore as D increases, ho should

h decrease as shown (+ vs. # symbols). Notice that Run 20

data, for HA=30° is lower than other tubes. This was an un~

expected result.

2. Overall Heat Balance

Figures 23 and 24 demonstrate how close the heat trans-

fer rates compared. In these figures TRAN1 represents the

heat transfer rate as measured by the collected condensate
whereas TRAN2 represents the heat trahsfer rate as measured by
the cooling water flow. In general TRAN]l is below TRAN2. The
mass flow rate used in the calculation of TRAN1l was based on
measurements of condensate in the hotwell. The drainage of the
condensate was not steady-state during the tests. A lower
measured mass flow of condensate than the actual mass flow

of condensate should be expected due to that unsteady condition.
Further, since the calculation at TRANl is based on the measured
vice actual mass flow rate, it should be no surprise that TRAN1
will be somewhat lower than the actual heat transfer rate. Since
no equivalent unsteady condition is involved in the measurement
leading to the calculation of TRAN2, we would expect TRANl to

be lower than TRAN2.
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3. Pressure Drop

Figures 25 and 26 show comparisons of the corrected
pressure drop versus cooling water velocity for all tubes.

Tube Y-1 shows an increase of about 138 percent, and tube Y-2
shows an increase of about 86 percent over the smooth tube
value (S-1) at 5 m/sec cooling water velocity. Tube GA-1
shows an increase of about 32 percent while tube GA-1 shows
an increase of about 6 percent at the same cooling water
velocity.

As seen from Figure 26, tube T-1 shows an increase of
about 295 percent while the tube T=-2 shows an increase of about
250 percent over the smooth tube (S-1l) value at 5 m/sec cooling
water velocity. Tube G-1 shows an increase of about 130 per-
cent while tube H-1 shows an increase of about 55 percent at
the same cooling water velocity.

4, Sieder-Tate Parameters

The Wilson plots for all tubes are shown in Figures
27 and 28. These figures show that the generated lines fit
the data very well within the uncertainty bands around the data
points. As seen in Table 14, the Sieder-Tate constant for the
smooth tube was about 0.024, which is in agreement with the range
of values of 0.023 to 0.027 found in the literature.

Figure 29 shows that tubes GA~l and Y-1l, with an
average Ci of 0,040, reflect a factor of about 1.67 increase
over that for a smooth tube. Tube GA-2 with a C; of about 0.032,
shows a factor of about 1.33 increase over the smooth tube

value, which is slightly better than that for tube Y-2.




FPigure 30 shows also that tubes T-1 and T~2 with a
Ci of about 0.040, gives an improvement factor of about 1.67,

and tube G-1 with a Ci of about 0.037, shows a factor of about

1.54 increase over the smooth tube value. These increases pre-
sumably are due to increased surface area, turbulence and swirl
effects.

The Sieder-Tate constant was found to be about 0.019
for tube H-1, which is below the smooth tube value, As seen
from Table 21, the corrected overall heat transfer coefficients
for this tube are less than the smooth tube, and increase very
slowly with increasing cooling water velocity. This tube had a
special outside surface structure as shown in Fiqure 9, Be-

ER cause of this structure, it tended to hold the condensate
on the outside surface. Also, the outside heat transfer co=
efficients were found to be about 100 percent less than the
smooth tube value., Therefore, this tube's data is not meaning-

ful for comparison purpose.

] 5. Friction Factor

The friction factor results are given in Figures 31
and 32. Here, as expected, the friction factor for the en-
hanced tubes are greater than for smooth tube except the H-l

and GA-2 tubes. The friction factors for these tubes are near
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the smooth tube value. The reason is seen in the following

friction factor equation:

£, = (pp) AP, ) (29, )
2
4(L ,/D;)G

As seen from Figures 24 and 25, tubes GA-2 and H~1l have
pressure drops near the smooth tube value; also GA-2 and H-1l
have diameters which are less than the smooth tube diameter
so that their friction factors will decrease.

Tube T-1 shows the largest friction factor overall,
and tubes T-2 and Y-1 also show large friction factors for the
other tube types, which have the most severe corrugations and
groove depths.

In examining the tube characteristics given in Table 3
and Figures 31 and 32 together, Tubes T-1 and T-2 have the
largest groove depth and they have the highest friction factor.
Tube Y~1 has a 0.94 mm groove depth and a 80° HA; therefore it
has a larger friction factor than the other tube types. Tubes
GA-1 and GA-2 have 1.10 mm groove depth but they have a larger
number of groove starts so that the distance between ribs is
very small. Therefore, these tubes have the lowest friction
factor compared with the other tubes. It is apparent that
as tube groove depth increases and pitch decreases (or helix
angle increases), the friction factor increases .

6. Tube Performance Criteria

a. Colburn Analogy
The Colburn Analogy can be used to define a per-

formance factor that directly relates heat transfer to pressure
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drop. Comparisons of this tube performance factor (2j/f)
versus Reynolds number are shown in Figures 33 and 34. As
given by this ratio the effect of friction factor is seen to

be relatively more important than heat transfer for the tubes

‘p-1, T-2, Y-l and ¥Y-2 which have high friction factors.

Tubes GA-1 and GA-2 have friction factors near the smooth
tube results, and these lower friction factors give higher

results for 2j/f.

b. Surface Area Ratios

Use of surface area ratios as defined by equation
(26) provides an additional performance parameter more useful
perhaps for the design engineer than the Colburn Analogy.
Neglecting the external thermal resistance (Rext = (), Figure
35 shows that this area ratio makes tubes GA-1l, GA-2, and Y-l
appear very good for condenser use. Tubes Y-2 and G~1 appear
to perform like the smooth tube. Tube GA-1l shows the greatest
reduction in required surface area. It is also seen that tubes
GA-2 and Y-1 appear to perform well.

The area ratio for the smooth tube (S-1) is found
to be about 1l.14. Actually this ratio should be very close
to unity. The reason for the higher area ratio is seen in the

following equation:

A Nus/Pr1/3( ,U/yw) 0.14 Re

Ay Nu/erl/3¢ 0.1 ge 3f
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where;

Nu_ = 0.027Re O+ %pr/3( sy )0 14 (27)
3 0.5
0‘027faRea :
Re_ = (28
8 |o0.046 Nua/Prl/ > Iu/ﬂw)m4

As seen from equations (27) and (28), the Sieder~Tate constant
for the smooth tube is 0,027, but the actual Sieder-Tate con-
stant found from experimental data is 0.024, leading to the
apparent discrepancy in area ratio.

Area ratios for a non-zero external resistance can
also be found, and are shown in Figure 36, Again, tube GA~1l
is seen to have the best overall performance. Tube T-1 has
the misleading data due to mixed condensation and therefore

the curve is dashed.

When comparing Figures 35 and 36, the taking into
account of Rext has a significant effect on the results. The
area ratio, as expected, will increase when the wall resistance
is taken into account.

c. Internal And External Performance

Table 22 gives ratios of the average Sieder-Tate

coefficients for the augmented tube data (Eia) to that of smooth

tube data (Eis), and average outside heat transfer coefficients

for the augmented tube data (T%a) to that of smooth tube data
(ﬁos) for each tube type.

The study of Table 3 and 23 indicates that the
inside and outside heat transfer coefficients are related to

change in pitch (for approximately constant groove depth).
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This is shown in Figqures 37 and 38. In Figure 37, the value of
ratios of Eia/Eis is plotted versus varying pitch (for constant
groove depth). The trends of the data in the Eia/Eis curve
reveal that there is perhaps an optimum pitch (at a constant

groove depth) to increase the inside heat transfer coefficient.
‘-

-

This could be due to the fact that as pitch changes from being
very large to very small, the nature of the internal flow
changes from predominately swirling motion to a flow dominated
by large scale turbulent mixing. The optimum pitch could
therefore be one that produces a combination of these mechanisms.

In Figure 38, the value of ratios of Ebafﬁés is
plotted versus varying pitch (for constant groove depth). As
seen in Figure 38, the outside heat transfer improves with de-
creased p‘tch. With reduced pitch, condensate drainage im-
proves, and more channels are provided, presenting more tube
surface area to the steam flow.

The maximum Hsa/ﬁss ratio was obtained for tube
¥-2 which has a helix angle of 85° from the tube axis. The
maximum Eia/cis ratio was obtained for tube GA-1l which has a
helix angle of 45° from the tube axis.

The R _,/h,, ratios for tubes T-1 and T-2 were
about 1.84 and 1.39 respectively. Tubes T-1l and T-2 have the
same pitch/diameter ratio and therefore they should have
about the same h /R . ratioc. The value of 1.84 obtained for
tube T-1 is misleading due to mixed condensation of both film-

wise and dropwise modes.
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C. RESULTS BASED ON THE HYDRAULIC DIAMETER, Dh

l. Heat Transfer Results

Tables 24 through 27 contain all the results obtained,

for General Atomic and Turbotec tubes based on the hydraulic
diameter. The inside and outside heat transfer coefficients
are both smaller in value for the results based on the hy-~
draulic diameter in comparison to the smooth end results.
The major reason for this is that the actual surface areas of
the enhanced sections are larger than the surface area at the
smooth ends. As shovwn earlier, the heat transfer rate can be
computed as:

Q= UnAnLMTD = UOAOLMTD (3)

For a measured value of Q and LMTD, the UA product must remain
constant., Using equation (41), it is easily seen that if Ay

and A, both increase when using the hydraulic diameter reduction
scheme, it follows that the calculated inside and outside heat
transfer coefficients must decrease. In addition, as would be
expected, the Nusselt number and Stanton number also decrease

as seen in the tabular results.

2. Friction Factor

The friction factor found using the hydraulic diameter
is less than the corresponding friction factor using the smooth
end diameter, as seen when comparing Figures 31, 32 and 39.

The reason for the smaller friction factor is seen i1 the
following friction factor equation:
(/3)(APts)(29c)

4 = (14)
ts 2
4(1ts/ni)c

52

- —

e e N it < o MBI A TN LafE A S P A e




-y

Since G, the mass rate of flow per unit area, is inversely
proportional to diameter squared, then the friction factor

is proportional to Ds. Since Dh is less than Di for all tubes
for which a hydraulic diameter was calculated, then the fric-
tion factor will decrease accordingly.

3. Performance Criteria

As seen in Fiqure 40, the tube performance factor
2j/f, when using the hydraulic diameter, increases significant-
ly for Turbotec tubes and decreases for General Atomic tubes
when compared to the results based on the smooth end diameter.
However, as seen in Figure 40, tubes GA-1l and GA-2 are still

better in this respect than any other tubes.
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V. CONCLUSIONS

As a result of the above-mentioned tests, the following
conclusions are reached:

1. The maximum corrected overall heat transfer coeffi-
cient was obtained with the tube T-1, and was about 1.9 times
that of the corresponding smooth tube. As mentioned earlier
for this tube mixed condensation was obtained. For filmwise
condensation, the best result was obtained for tubes Y-l and
GA-1. The minimum corrected overall heat transfer coefficient
was obtained with tube H-1 which was manufactured for use
with refrigerants.

2. For constant heat load and constant pumping power,
tube GA~-1l would allow for apvroximately a 42 percent reduction
in the required surface area at the Reynolds number of 40,000.

3. The maximum inside heat transfer coefficient
(Eia/'c':is = 1.66) was obtained with tube Y-1.

4. For inside heat transfer, an optimum pitch/diameter
may be near one. (i.e., Helix angle near 45°) .

5. The maximum outside heat transfer coefficient
(Esa/ﬁss = 1,94) was obtained with tube Y-2.

6. Outside heat transfer increases as pitch/diameter de-
creases; this also agrees with Reference /[~ 21 7.

7. The tests of tube T-1 re-affirmed the well-known fact
that to get a higher overall heat transfer coefficient, it
may be appropriate to promote dropwise condensation on the

outside tube surface.
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8. The largest pressure drop measured for all the enhanced
tubes was for tube T-1l. The minimum pressure drop measured
was for tube GA-2.

9, Pressure drop increases as groove depth increases and
pitch/diameter decreases.

10. The larger diameter tubes have less overall heat trans-
fer coefficient and, less pressure drop when compared with the
small diameter tubes.

11, It is found that, for constant groove depth/diameter
/ e/D_7 ratio, as pitch/diameter / P/D_7 ratio increases for
tubes GA-1l and GA-2, Cs decreases. This result agrees with
Reference / 21 7

12, Yorkshire Imperial Metals tubes are better than General
Atomic tubes on outside heat transfer since they have larger
helix angle (i.e., HA near 80°).

13. The optimum shape may be 45° to 60° helix angle on
the inside surface and 90° helix angle on the outside surface
of the tube.

14, For tube Y-1, A /R _ was found to be about 1l.4;

oa’ os
this result agrees with Reference / 22_7.
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VI. RECOMMENDATIONS

The following recommendations are made for further
experiments.

1. Tests should be performed using various steam veloci-~
ties and various test condenser pressures.

2, Testing of enhanced tubes should be done in a vertical
orientation. This would determine the effect of condensation
drainage vertically rather than horizontally off a tube's sur-
face.

3. To evaluate the effects of tube~to-tube interactions,
tests should be performed using several active tubes instead
of one active tube.

4. To increase the condenser vacuum, it is recommended

that a higher capacity vacuum pump be connected to the system.
5. To prevent moisture in the cold trap, it is recommended
that a larger secondary condenser be connected to the system.
6. To get continuous condensation flow from the test con-
denser to the test condenser hotwell, a vacuum regulator line
should be put between the test condenser and the test conden-

ser hotwell,




VII. TABLES
Channel Channel
Number Location Location
40 Teqi u8 Tv
41 Tco 49 Tv
42 Teco 50 Tv
43 Tco 51 Tw
Test Condensenq
4y Tco 52 Hotwell
45 Tv 53 Tecy
Secondary Cons
u6 Tv 54 den Hot 13
u7 Tv
Table 1. Location of Stainless Steel Sheathed
Copper Constantan Thermocouples
Channel Channel
Number Location Number Location
1l Hotwell 6 Condensate
Header
2 Feedwater ) Tc into Cool -
Tank ing Tower
3 Condenser 8 Te out of
Window Cooling Tower
. Cooling Tower
' 4 Tei S Ambient
l- 5 Teco
'
'
.f Table 2. Location of Teflon Coated Copper

Constantan Thermocouples
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FLOW T, (TC) Tw (e Tci (°C) Tco (C)| P (KPa)
15 66.35 24.60 18.80 23.78 0.53
20 66.10 24.10 19.00 23.20 0.91
1 30 65.25 23.90 19.20 22.55 1.88
40 65.87 23.80 19.70 22.u48 3.20
50 66.32 23.60 20.10 22.50 4.68
60 66.37 24.20 20.40 22.58 6.50
70 66.50 24,30 20.60 22.55 8.51
80 66.93 25.00 21.00 22.80 10.86
90 66.77 25.50 21.30 23.00 13.31
100 67.23 24.90 21.70 23.20 16.32
Table 5. Raw Data for Stainless Steel Smooth
Tube , Run 9 .
Png T (%) | T, ¢°C) | Te, (°c) | Te. (°C)| P (XPa)
v w i o a
15 66.47 37.30 20.80 29.23 1.48
20 66.67 37.10 20.60 27.85 2.35
30 66.90 34.10 20.65 26.38 4.90
3
40 67.02 31.20 20.80 25.58 8.16
us 67.68 29.90 20.35 24,78 16.11
50 67.53 31.60 20.60 24.80 12.05
60 67.58 30.60 20.70 24.40 16.76
65 67.83 30.50 20.45 23.88 19.37
70 67.65 28.60 20.90 24,23 21.91
80 67.62 27.90 20.90 23.90 27.62
‘ ' 90 67.80 26.80 20.70 23.45 33.78
; 1100 67.82 27.50 20.70 23.23 41.28
Table 6. Raw Data for 45° HA General Atomic
1 ’f n Tube , Run 10 .
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FLOW! Tv (°c) | Tw (°C) Tey (°c) Te, (°c)l P (KPa
15 70.73 39.30 20.40 27.75 1.10
20 70.87 37.50 20.30 26.53 1.79
30 70.65 34,70 20.40 25.13 3.83
40 70.17 32.80 20.40 24,25 6.25
50 70.27 31.50 20.40 23.75 9.17
60 69.72 30.80 20.45 23.45 12.53
70 69.38 30.00 20.50 23.20 16.32
80 69.75 28.70 20.60 23.03 20.97
90 69.95 28.50 20.25 22.50 25.62

100 69.50 28.20 20.05 22.15 31.14

Table 7. Raw Data for 30°HA General Atomic
Tube , Run 20

rng Tv (9C) | Tw (°C)| Tey (9C) Te, (°C] P (KPap
15 68.05 45,00 23.30 32.u48 2.35
20 68.27 42.80 23.05 31.15 3.96
30 68.47 40.50 23.20 29.73 8.57
40 68.27 38.80 23.65 29.28 14.79
50 68.53 37.90 23.60 28.60 22.76
60 69.32 37.10 23.90 28.30 31.92
70 68.97 36.40 24.10 28.00 42.75
' 80 69.28 36.10 24.30 27.90 55.03
i 90 69.28 35.10 24.40 27.80 68.90
;. 100 69.42 35.60 24.60 27.70 85.20
¢

Table 8. Raw Data for Turbotec Tube with
* Micro Grooves , Run 13
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FLOW Tv (7C) Tw (°C) Tci (-c) Tco ’e) P (KPa)
10 68.97 50.80 22.20 34.73 0.97
1% 68.98 46.80 22.00 32.00 2.01
20 68.73 45.00 22.00 30.90 3.39
.30 69.00 41,90 22.20 29.58 7.08
40 69.82 39.30 22.60 29.00 12.46
50 69.u48 37.u40 22.90 28.73 19.90
60 70.12 36.00 23.10 28.43 29.18
70 69.85 35.00 23.40 28,30 40.59
80 69.32 34.30 23.85 28.15 53.33
90 70.03 33.80 23.95 28.10 66.83
100 69.u45 33.30 24.10 27.93 83.72

Table 9. Raw Data for Turbotec Tube , Run 15

Fng v (°C) Tw (°C] Te; (°CY Teg (°c) P (xpa)
15 66.73 47.50 25.45 33.15 0.85
20 66.87 47.30 25.70 32.60 1.54
30 66.85 44,00 26.05 31.70 3.23
40 67.02 41,20 26.65 31.35 5.59
50 67.60 41.50 26.75 30.85 8.4l
60 67.75 41.70 27.20 30.85 11.65
70 67.75 41.00 27.50 30.73 15.19
80 67.73 38.40 27.60 30.65 19.27
i 30 67.78 39.10 27.80 30.50 23.67
;. 100 67.83 39.70 27.85 30.38 28.44

Table 10. Raw Data for Yorkshire Roped
Tube , Run 16
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Table 12, Raw Data

FOE ey Ty r o %
rs ”'; _ﬂ‘g ) ‘
e v s AR O iiabine £ Bs: arihasic-take. T : ——— F.
% o [o] (o]
FLOW| Tv (°C) | Tw (°C) | Te; (°C)f Teg (°c) P (KPa)
15 69.10 41.20 21.65 28.95 0.66
20 68.92 39.70 21.30 28.23 1.16
30 68.97 37.50 21.45 27.35 2.45
40 68.63 35.90 21.35 26.50 4.27
50 69.23 35.30 21.50 25.98 6.44
60 69.13 34,80 21.60 25.65 9.04
70 69.15 34.50 21.80 25.50 11.99
80 69.17 34,10 22.00 25.35 15.29
90 69.15 33.90 22.10 25.23 18.99
100 68.80 33.60 22.20 25.15 23.10
Table 1l. Raw Data for Yorkshire Roped Tube
with Enhanced Profile , Run 12
% o]
FLowl Tv ()| Tw (°c)| Te. (°c] Te, (°c P (KP%)
5 69.80 48.90 20.65 27.85 0.82
10 69.55 44,30 20.60 25.30 2.83
20 69.13 41.10 20.25 23.03 9.73
30 68.80 39.90 20.10 22.20 20.84
40 68.38 39,40 20.10 21.73 35.47
50 68.32 38.90 19.95 21.33 53.33
60 68.15 38.50 19.90 21.10 75.94
¢ 70 68.47 38.50 19.80 20.90 | 101.17
| 80 68.47 37.60 19.80 20.80 | 130.87
; 90 68.28 37.50 19.70 20.60 | 163.11
L. 100 68.02 37.70 19.50 20.40 | 202.97
]

for Hitachi Tube , Run 18

63




. mma

M g L L a0 v e s

rng Tv (°C)| Tw (°C)| Te; (°C) Teg )] P (xpal
10 69.42 42.10 22.55 | 31.73 0.47
15 69.45 39.30 23.00 30.43 0.85
20 69.67 37.40 23.10 29.35 1.70
25 69.18 |- 36.40 23.30 29.00 2.42
30 69.12 35.80 23.40 28.63 3.04
40 69.03 34,50 23.20 27.65 §.90
50 69.15 33.40 23.10 27.03 7.13
60 69.55 32.70 23.10 26.63 9,73
70 69.53 32.40 23.30 26.45 12.65
80 69.65 32.20 23.50 26.45 15.92
90 69.55 32.20 23.90 26.55 19.31
100 69.35 32.20 24,25 26.75 23.17

Table 13 Raw Data for German Tube , Run 19
64
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Table 23 . Summary Of Heat Transfer Capabilities Of Enhanced

| Condenser Tubing
Tube No. Tube Type Eia/clo E;a/ﬂss
GA-1 General Atomic (45°HA) 1.70 1,38
GA=2 General Atomic (30°HA) 1.33 1.10
! T-1 Turbotec (Normal) 1.66 1,84
T-2 Turbotec with Micro 1.63 1,39
Grooves
-1 Yorkshire Roped 1.66  1.41
Y=-2 Yorkshire Roped with 1.23 1.94
Enhanced Profile
G-1 Special German 1.50 0.90

Inside Heat Transfer Coefficient (Sieder-Tate)

C /)

°°8Pr1/3 0.14

Nui = hiDi/kb = CiRe

Outside Heat Transfer Coefficient Nusselt)

Pt ‘f¥‘F%’9hfgkf3 ]

MgDy (Tg=T,)

0.25

ho - 0.725[

84
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(a) Yorkshire Roped Tube,Run 16

(b) Yorkshire Roped with Enhanced
Profile Tube,Run 12
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(¢) Hitachi Tube,Run 18

) Figure 9. Photograph of Test Tubes |
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(a) Turbotec Tube ,Runl5

{(b) Turbotec Tube with Micro
_Groqyes,Run 13
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(c) General Atomic Tube,45° HA,
Run 10

Figure 10. Photograph of Test Tubes
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German Tube,Run 19

Figure Il. Photograph of Test Tube
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T, ) o

3 = Helix Angle
e = Groove Depth

D.=D:+2t, = Outside Diameter

(=) i W

D, = Inside Diameter 1
tw = Wall Thickness

[ 4
‘. Figure 16. Definition of Helix Angle,Groove Depth, J
; Pitch,Dj, Dy,and t, .
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Figure 19. Photographs Of Mixed Condensation On
Turbotec Tube.
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Figure 31. Friction Factor Versus Reynolds Number.
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APPENDIX A

TUBE CLEANING PROCEDURE

To insure filmwise condensation, the condenser tubes had to
be prepared. Exterior and interior surfaces were cleaned to in-
sure proper wetting characteristics and to insure that all de-
posits were removed. Titanium tube was prepared in accordance
with the procedure given in Fenner éf12;7. Copper and copper-
nickel tubes were prepared in accordance with the procedures
given in Pence 4710_7. Stainless steel tubes and inside of the
test condenser were prepared in accordance with the procedure
given in Newton 1723_7. The steps in these cleaning procedures
are as follows:

A. Titanium tubes cleaning process
l. Swab tube surface with acetone to remove grease,

2. Using a test tube brush, brush the inside surface
of the tube with a 50 percent sulfuric acid solution.
Also apply this solution to the outside surface of
the tube.

3. Rinse inside and outside of tube with tap water.

4. Apply a 50 percent solution of sodium hydroxide
(heated to 95°C) to the outside surface of the
tube.

5. Rinse the tube with tap water.

6. Rinse thoroughly with distilled water.

Copper and copper-nickel tubes cleaning process.

l. Prepare a solution of equal parts of ethyl alcohol
and a 50 percent solution of sodium hydroxide, and

heat to 85°C.
133




2.

3.
4.

i T o R

Apply this solution to the surface of the test

tube.

Drain and rinse the test tube with tap water.

Rinse thoroughly with distilled water.

To remove any deposits on the

inside surface of

the test tube a solution of 50 percent hydrochloric acid is

used. The acid solution is applied by brush and the test tube

is then rinsed thoroughly with tap water.

After rinsing with

tap water the tube is then rinsed with distilled water.

C. Stainless steel tubes cleaning process.

1,

3.

4.
5.
6.
7.

Prepare a Alconox detergent solution and heat to

90°¢c.

Apply this solution to the inside and outside

surfaces of the test tube,

Drain and rinse the test tube with distilled

water.

Spray with alcohol.

Rinse with distilled water.
Spray with acetone.

Rinse with distilled water.

To remove any deposits on the

inside surface of

the test tube use the process as outlined above for the copper

and copper-nickel tubes.
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APPENDIX B

OPERATING PROCEDURES

l. LIGHT-OFF PROCEDURE

A. Boiler Operation

(1)

(2)

(3)

(4)

(5)

(6)
(7)

(8)
(9)

Energize main circuit breaker located in power
panel P-2,

Turn key switch on - located on right side of main
control board.

Energize circuit breaker on left side of main
control panel by depressing start button.

Energize individual circuit breakers on left

side of main control panel. The following list
identifies each circuit breaker:

(a) #1 - Feed pump
(b) #2 - Outlets

(c) 43 - Hot water heater (feedwater tank)
(d) #4 - Condensate pump

(e) #5 - Boiler

(f) #6 - Cooling tower

(g) #7 - Cooling water pump

Insure water level is up in the feedwater tank,

and turn on switch to energize heater.

Check valve alignment for recirculating water (Fw-1l),
Turn on the switch to the feed pump to recirculate
water in the feedwater tank.

Energize instrumentation (See section #1l).

Energize cold trap refrigeration unit, insure that

flammable stowage locker exhaust fan is on, and

start vacuum pump.




(10)

(11)

After feedwater tank has reached a temperature of
60°C, insure water level in boiler is avove low
level mark and energize boiler.

Open valve FW=4 (Set rotameter to 15-25% flow).

2. OPERATION

A. Cooling water system

(1)
(2)

(3)

(4)

(S)

(6)
(7)

B. Steam System

(1)

Open valves CW-1l and CW-2 two turns.

Open valve CW-4; then energize pump No. 1l and
pump No.Z2.

Open valve CW-2, and open valve CW-1 (set flow-
meter to 40-50% flow).

Open valves CW-5 and CW-6 to obtain desired
cooling water flow rate.

Adjust valve CW-4 to obtain desired flow rate.
Vent both sides of the 3.66 m. manometer.

Open valve DS-1 (Begin flow to secondary con-

denser).

Boiler operation

(a) When boiler has reached the desired pressure ]
(approximately 3 psig) open valve Ms-~1,

(b) Insure valve MS-6 is oven.

{c) Open valve MS-3 to obtain desired steam flow

rate to test condenser. Open valve MS-4 as

necessary to maintain boiler pressure at

desired level (approximately 5 psig).




-

(2) House steam operation

(a) Follow steps (1) through (4), (8), (9)

and (l11) as outlined above for boiler
operations.
(b) Insure valves MS-l1l is closed and MS-6 is open.
{c) Close valve MS~3 and open valve MS-4,
(d) Open valve MS-2 (approximately 1 turn).
(e) After 5-10 minutes open valve MS=3 to obtain
desired steam flow rate to test condenser,
and close valve Ms-4,
(f) Adjust valve MS-2 approximately 5 psig.
. C. Condensate and feedwater system
{1) Using boiler
(a) To collect drains in test condenser hotwell
operate with valve C-1 closed., After test run
has been completed, open valve C-1 and condensate
will drain into secondary condenser hotwell.
(b) The condensate pump is operated intermittently,
when level in secondary condenser hotwell
dictates. When pump is secured, keep valve C-=2
closed. When pump is required, start pump and
then open valve C=2., In this mode keep valve
C-3 closed. When pump is not required, close
valve C-2 and stop pump.
(c) While feed pump is running (continuous opera-
tion) valve FW-1l must be throttled so that a

positive flow is insured (about 20% percent
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(2)

3. SECURING SYSTEM

flow). Valve FW-2 is a solenoid valve which
is actuated by the boiler controls.

{d) when boiler is energized, valve FW-3 must be L
fully opened,

(e) Make-up is added to the system through the

top of the feedwater tank by removing anode.

Using house steam

(a) As using boiler, the condensate pump is opera-
ted intermittently, when level in secondary
condenser hotwell dictates. When pump is
secured, keep valves C-2 and C-3 closed. When
pump is required, start pump and then open
valve C=3, in this mode keep valve C-2 closed.

(b) Keep feed pump closed.

A. Using boiler

(1)

(2)
(3)

(4)
(5)

(6)
(7

Close valves MS-3 and MS~4. Secure power to boiler
and then close valve MS-1,

Close valve Fw-4,

Pump condensate from secondary condenser hotwell

to feedwater tank. Secure valve C-2.

Secure vacuum pump and refrigeration unit,

Secure power to heater (switches on side and

stand).

Secure flow to secondary condenser.
Bottom blow boiler to remove deposits. Repeat
twice, blowing from high water mark to low water

mark each time.




e

(8) Secure pump No. 1 and pump No. 2, and close valves
CW-4, CW=-5 and CwW-6.

(9) Secure instrumentation.

{10) Secure power to feed pump.

(11) De-energize individual circuit breakers.

(12) De-energize circuit breaker on control panel;
depress stop button, Turn key switch off,

B. Using house steam

(1) Open valve MS-4, then close valve MS-3,

(2) Close valve Ms-2.

(3) Close valve Fw-4.

(4) Pump condensate from secondary condenser hotwell
to house condensate return., Secure valve C=3,

(5) Follow steps (4), (6), (8), (9), (11) and (12)
as outlined above for using boiler.

4. SECONDAPRY SYSTEMS

A. Vacuum system
Vacuum is established by a mechanical vacuum pump and
is controlled by a vacuum regulator mounted on steam
return line (near valve MS-6). The vacuum pump is
separated from the condenser system by a refrigerated
cold trap to prevent moisture from entering the pump,
' The cold trap hotwell is drained intermittently, when
l ) level in cold trap hotwell dictates.
; B. Desuperheater

A Valve FW-4 controls flow of feedwater (60°C) to spray
t .

nozzles. Optimum flow level is between 15 and 20




5.

percent flow on rotameter when using boiler and be-
tween 20 and 30 percent flow on rotameter when using

house steam.

SAFETY DEVICES

A.

Emergency power shut-off

To secure all power to the system in an emergency

depress the red button on the right of the main control

panel next to the key switch.

Boiler

There are three lights on the boiler

(1) The white light will light indicating that the
electrical circuit for the boiler has been ener-
gized and that all controls are working properly.

(2) The amber light will light whenever the element
is operating and will go out whenever it shuts off
(when boiler reaches pressure).

(3) The red light will also light and will remain on
at all times unless for some reason, the heating
element overheats, it will then be shut off auto-
matically by the thermostatic control on the heater.
As soon as the red light goes out this means that
the heating element and the boiler have failed safe,

(4) The mercury switch mounted on the main control
panel secure power to the heating elements of the
boiler when the steam pressure exceeds 25 psig.
Power is restored to the heating elements when the

pressure drops to approximately 15 psig.
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(5)

(6)

Section 1l:

A low water level limit switch is contained within
the boiler, and when the water level inside the
boiler drops below a present level, power is
secured to the boiler and will not be restored un-
til the water level is above the present height.
The relief valve mounted on the boiler is set to

lift at 30 psig.

ENERGIZE INSTRUMENTATION

A.
! B.

cC.

- - o e
[}

Multichannel pyrometer

Autodata 9 recorder and amplifier

Program Autodata using following procedure:
SET TIME:

(1) All alarms and outpat switches off

(2) Set date/time on thumbwheels (24 hour clock)

(3) Set the display switch to "time"

(4) Lift "set time" switch

ASSIGNING MULTIPLE CHANNELS:

(1) Set display switch to "off"

(2) Check that all alarms and output switches are still

off.

(3) Se“ the scan switch to "continuous".

(4) Lift the slow switch.

(5) Set the first channel thumbwheels to "000" and last

channael thumbwheels to "001".

(6) To assign channel "0" and "1" depress and hold the

10V and HI RES buttons for at least one scan and

141




(7)

(8)

(9)

(10)

ol

lift scan start switch to start scanning.

Set the
setting
Depress
39.

Set the

setting

last channel thumbwheels to "039" before
the first channel thumbwheels to "001",

the "skip" button to skip channels 1 through

last channel thumbwheels to "054" before

the first channel thumbwheels to "040%,

To assign channels 40 thru 54 depress and hold the

T/°C and HI RES buttons for at least one complete

scan.

INTERVAL SCAN:

(1) Set thumbwheels to interval desired between scans

(2)
(3)
(4)
(S)
(6)
(7)
(8)

Use
(1)
(2)
(3)

(usually one minute).

Depress
Set the
Depress
Set the
Set the
Set the

to "stop/enter" switch.

display switch to "interval”.

the "set interval" switch.

scan switch to "interval®/

first channel thumbwheels to "000",

last channel thumbwheels to "054",

Lift the "scan start®™ switch.

the following as needed/desired:

Printer

on/off,

Slow switch.

Single channel display,
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" APPENDIX C
SAMPLE CALCULATIONS

A sample calculation is.performed here to illustrate how
the data reduction program éfi;_7 progresses to the results.
The GENERAL ATOMIC, 45° spiral angle - AISI 409 tube, Run
number 10 at 70 percent flow (25.94 GPM) was selected at ran-
dom to perform this analysis.

The water property calculations are shown in section 1.
Section 2 of this appendix corresponds to the calculations
performed for plain end inside diameter and section 3 corre-

sponds to the calculations performed for hydraulic diameter.

INPUT PARAMETERS

Tube . GENERAL ATOMIC, AISI 409
Run Number 10
Tube inside diameter, Pain end (Di) 0.01925 m.
Tube outside diameter, (Do) 0.0202999 m.
Enhanced section length (Lts) 0.97155 m.
Smooth end length (Ls) 0.428625 m,
Enhanced section cross sectional 0.000331 m?
flow area, (A))

Outside nominal surface area (a,) 0.0619596 m>
Tube thermal conductivity, (kW) 22 w/m.%c

' Wall resistance, (Rw) 24.5%10"¢ m2%c/w

'. ) Tube hydraulic diameter, (Dh) 0.0162814 m.

; Inside wetted perimeter, (P ;) 0.08128 m,

",¥ . Outside wetted perimeter, (P ) 0.084328 m,
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Cooling water in, (Tci) 20.9%

Cooling water out, (Tco) 24,225°%

Average cooling water 22.5625% , 295.7125%
temperature (T, T, ) 72.6125°F , 532.2825°R
Steam vapor temperature, (Tv) 67.65°C

Tube wall temperature, (T ) 301.75°K

Tube pressure drop, ( P 21.9118 kPa

% Flow 70

Tube inlet contraction factor Kc‘

} Kc + Ke = 0,070

Tube outlet expansion factor Ke
Condensation rate, (Qcon) 0.032871 m3/hr
Saturation temperature 60.555°¢C

Section 1, Water Properties

k = 0.59303069 + (0.0019248784) (T (0.70238534x10-5)(Tb)2

b)
- (2.0913612x10'1°)(rb)3

k = 0.59303069 + (0.0019248784) (22.5625)~-(0.70238534x10™°) (22.5625)% |
-(2.0913612x10"10) (22.5625)3

k = 0.63288275 w/m.°C
pP-= 1001.434664-(0.21175821)(Tb)-(0.0023913147)(Tb)2

P = 1001.434664- (0.21175821) (22.5625)= (0.0023913147) (22.5625) 2
P = 995.43953 kg/m’

-4
f= (4.1335979x20" %) exp [ (0.0046066532) (T, ) +(4759.5941) / (T, )
-10.59252566]

U= (4.1335979x10")exp[ (0.004606532) (532.2825)+(4759.5941)/

(532.2825)
~10.59252566 |
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4

L= 9,2115311x10" ° kg/m.sec = 3.3161512 kg/m.hr

c, = 4.2092198-(0.0013594035)(Tb)+(1.3948397x10‘5)u-b)2

cp = 4.2092198-(0.0013594085)(22.5625)+(1.3948397x10-5)(22.5625)2

b ‘ c, = 4.1856488 k3 /kg.%c

m = (GPM) (0.00006309) (p)
1 A= (25.94) (0.00006309) (995.43953)
: m= 1.6290911 kg/sec = 5864.7281 kg/hr

Hep
Pr = x—
pr = _(9.2115311x107%) (4.1856488x10%)
, 0. 63288275
Pr = 6,092

Section 2, Plain-End-Tube Reduction

1. Determination of cooling water velocity

am

V-_-z
Py

(4) (5864.7281)

v = 3
(995.43953) (77) (0.01925)

v = 20243.316 m/hr
v = 5,62314 m/sec.

i . 2. Determination of mass flow rate per unit area
. 4m

' G = = 0OV

' 1TDi2 fD

'% ¢ G = (995.43953) (20243.316)

. ' G = 20,150,997. kg/m2hr
/1:\, G = 5597.499 kg/m>sec
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Determination of Reynolds Number

DiG

Rée B e

Re = _(0:01925) (5597.499)
(9.2115311x10™ %)

Re = 116,974.9

Determination of Overall Heat Transfer Coefficient

. 4
me T ~-Tc
Una—L 1n v i
An Tv-Tc !

o]

U = (1.6290911)(4.1856488x103) 1n (67.65-20,9) ]
)

n (0.0619596) (67.65-24. 225

U, = 8119.55 w/m?.°C

Determination of Corrected Overall Heat Transfer Coefficient

39 1 79-1- S 24.5x10-6
U, = 10,135.86 w/m2.°C

Determination of Friction Factor
£ = 0.046
s (Re)

£ = 0.046
S (116,974.9)0°2

fs = 0.00445799

14¢




(a) Smooth End Pressure Drop

(53
4st Dy

Ap =

P33,

(4) (0.00445799) (5597.499) % (J2528523)

Ap =

(995.43953) (2)
Aps = 6.24869 kPa

(b) Cooling Water Velocity At Test Section

ju}

Yes " AR

e (5864.7281)
tS  (995.43953) (0.000331)

s = 17,779.385 m/hr

ts = 4.94427 m/sec

(c) Expansion And Contraction Pressure Drop

2

v
Ap = —58_(k + K
e/cn c e
ch

(995. 43953) (4.94427)2

Argjen = (0.070)

(2)
Ape/cn = 0.8517 kPa




(d) Test Section Pressure Drop

£5Pts = 21,9118-6.2469-0,8517

prts = 14.8114 kPa
Aey, 23, p

f=
4G2 < iﬁs
b~

£ = (995.43953) (14.8114x10%) (2)

(4) (5597.499)2 Q.97155

f = 0.00466185

7. Determination of Wilson Plot Parameters

{a) Ordinate

1
Y = =
Un
Y= —L . 1.231595x10"% m2°c W
8119.55
(b) Abscissa
X = 1
0.14
(re)0°8 (pr)1/3 (M >
Hw

i} -4
M, = (4.1335979x107%)exp [ (0.004606532) (T, ) +

(4759.5941)/(Twr) -10.59252566 ]
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My = (4.1335979x10-4)exp [ (0.004606532) (543.15) +
(4759.5941)/(543.15) -10.59252566]

M, = 8.0979128x10"% kg/m.sec

X = 1

-4 0.14
(116, 974. 9) % 8 (6. 092) /3 [ 9.2115311::10.4 ]
8.0979128x10

X = 4.743567x10"°
8. Determination of Sieder-Tate Coefficient

Ci = T + where M = slope of linear regression subroutine

M = 0.7747896, from linear regression subroutine

(0.0202999)
(0.7747896) (0.63288275)

Ci = 0.0413987

9. Determination of Inside Heat Transfer Coefficient

C 0.14
i 0.8 /3 [ U )
h - —5—- k (Re) (Pr)
i i (/Uw

h, =(F57e )(0.63288275) (116,974.9) °* B (6.092) /3
(9.2115311 )°'14
3.0979128

hy = 28,692.88 w/m2%¢c
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11.

12,

13,

Determination of Outside Heat Transfer Coefficient

1
hy = B
1 _ re- __ﬁ_
Un Di i
1
h =
°© 1

-6 (0.0202999)
ITT3.55 - 24-5%10 - 15

[ L]

h, = 16,153.3 Ww/m2.%¢

Determination of Nusselt Number

k

Nu =

(28,692.88) (0.01925)
(0.63288275)

Nu =

Nu = 872,733

Determination of Stanton Number

Nu
St = rePr—

(872.733)
(116,974.9) (6.092)
3

St =

St = 1.224698x10"

Determination of Performance Factor

TPF = %i_

j = (st) (pr)?/3 = (1.224698x1073) (6.092)2/3
j = 4.085096x10™3

(2) (4.085096x10"3)

TPF =

(0.00466185)
TPF = 1,75256
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14. Determination of Heat Transfer Rate

TRAN] = 6}3[

(Ty~Tgar) * N¢ sat'Tcon)]

cpv v “sa + cpl(T

g
2
f’s 1001.434664-(0.21175821)(Tcon)°(0.0023913147)(Tcon)

= 1001.434664-(0.21175821) (51.7)=(0.0023913147) (51.7) >
= 984.09498 kg/m’

TRAN] = (3.2871x10-2)(984.09498)[ 1.9175544 (67.65-60.555)

+ (2357.6336) + 4.1868 (60.555-51.7)]
4

TRAN]1 = 7,7904706x10° kJ/hr
TRANL = (7.7904706x10%) (2.77731x10™%)
TRANL = 21.6366 kW

TRAN2 = mc (T -Tc

P i)

TRAN2 = (5864.7281) (4.1856488) [24.225-20.9 ]
TRAN2 = 8,1621x10% kj/hr
TRAN2 = (8.1621x10%) (2.77731x10”%)
TRANZ = 22.6687 kW i
15, Determination of Area Ratios
(a) Ry y=0
3 0.5
Re, x| —0:027 £ Re ]

“0.046 (wu/(pr/3) ( upu,) 00 14)
_ 0.5
e | £0:027) (0.00466185) (116974.9) 3

-4 0.14
| (0.046) <s72.733 /(5.0921/3)(9.2115311::10“4 ) ) ]
/ 8.0979128x10

Re, = 96603,.056
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(b) Royp ¥ 0

0,046
(Re ) "*

0.046
(96603,.056)

0.2

= 0,0046319052

(Reg) 3 (£,) (96603.056) 3 (0.0046319052)
(Re) > (£) (116974.9)> (0.00466185)
= 0.55962

= 1.0 (fouling correction)
= 0,89 (material correction for AISI 409 steel)

= 1,02 (temperature correction factor inlet cooling
water)

= 2922 (for smooth tube) ; Cm=2652.59

= 7960.343 W/m2.°C
0.2 _1/2.3

_[ fvdc (PP ]

0.0046Ua\ F

3 0.2.1/2.3
_[(0.00466185)(5.62314) (2652.59)((995.43953x0.01925{>
(0.046) (7960. 343) (9.2115311x10™ %)

= 5,175541 m/s

0.5

= C(v,) = 2652.59(5.1755411)%°5

= 6034.593 wW/m2.%
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Us _ 6034.593

a - [}
A U, 7960.343
A

~2_ = 0.75808

A

Section 3, Tube Reduction Based Upon Hydraulic Diameter

Determination of Cooling Water Velocity

1,
Veg = 4.94427 m./sec
Determination of Mass Flow Rate Per Unit Area

G = i - _(5864,7281)

G = 17,718,212, kg/m?.hr

G = 4921.7256 kg/m2.sec
Determination of Reynolds Number

D, G
Re 2 cmee

3.

Re = (0.0162814) (17,718,212)
(3.3161512)

Re = 86,991,599
Determination of Overall Heat Transfer Coefficient

4,
U = 8,119.55 W/m2.°¢C

n
Determination of Corrected Overall Heat Transfer Coefficient

5.

U_ = 10,135.86 w/m2.°¢C
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6. Determination of Friction Factor

Ar, = 14.8114 kPa

ts

Ar 29, o
L,
2 ts
4G ( > )

. 1995.43953) (14.8114x103) (2)
(4) (4921.7256)° ( 0.97153 )

£ =

f = 0.0051

7. Determination of Wilson Plot Parameters

(a) Ordinate

1
Y:
o L
20
Y = 1.231595x10"% R o C
(b) Abscissa
X= : oI
(re) 0+ 8 (pr) 1/3 ( | 23 > .
w
1

0.14
9.2115311
8.0979128

(86,991.599)°/8(6.092)1/ﬂ<

X = 6.0117x10"°>

8. Determination of Sieder-Tate Coefficient

’
‘ C. = AnDh
. i
' w ts
' :
L c. = 10.0619596) (0.0162814)
. )
' 1 (0.08128) (0.97155) (0.61141126) (0.63288275)
;1 C; = 0.0330137




9. Determination of Inside Heat Transfer Coefficient

c.x 0.14 i
i (Re)o's(Pr)1/3< ﬂg ) ]
w

h B comsvm———
i Dy

- (0'0330137)(0'63288275)(86,991 599)0'8(6 092)ll./3
—T0.0T628T ' '

L .
(9.2115311 ) 0.14

8.0799128
hy = 21,346,776 w/m?.%c

10. Determination of Outside Heat Transfer Coefficient

1

Pw_L Pw Pw
o'ts _ _‘o_ pu )

AnUn

ho =

?

bar

h =
©  (0.084328) (0.97155)  _ (0.084328) (5. 5.14"6) . {0:084328)
L] * L

hy = 11,198,192 w/m2.%

11. Determination of Nusselt Number

h,D
N = —ih
u k

y = 121,346.776) (0.0162814)
u (0.63288275)

N, = 549.1624

v
‘. 12, Dpetermination of Stanton Number
L]
]

Nu_ _ _ (549.1624)
4 ’ . .

3

St =

St = 1,0362477x10
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13.

Determination of Tube Performance Factor

TPF = %i—

i = StPr2/3

j = (1.0362477x10"3) (6.092)2/3

j = 0.0034565

opF =  A2)(0.0034565)

TPF = 1.35549
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APPENDIX D
UNCERTAINTY ANALYSIS

The basic equations used in this section are reproduced

from Reilly / 117. The general form of the Kline and McClintock
/ 24_7 "Second Order” equation is used to compute the probable
error in the results. For some resultant, R, which is a func-
tion of primary variables Xyr Xgr eeeeXp the probable error

in R, R is given by:

1/2
2 2
SR-[ & %xl) (SR Sx2> + ...+(-Si an) ] (D1)
le sz an
where X1r Xgypeeo X, are the probable errors in each of the
# measured variables.

l. Uncertainty In Overall Heat Transfer Coefficient, Un

The overall heat transfer coefficient is given by
equation (5) in chapter III as:
rL 1,,(:_.;3_) (s)
o
By applying equation (D-1) to equation (5) the fdllowing

equation results:

2 2 . 2 2
-KSA,‘)+ (.S_cﬁ>+ (Sm )+ ( STV(Tci-Tco) )
Af cq ) (T,~Tc,) (T,~Tc,) 1n N

v (o)
1/72
' T 2 i 2
Vo - T _~Tc T,~Tc;
' . ‘Tv Tci ) 1n !!wc_i- (TV-TCO) 1n !-:-:ﬁc_o_
L. v.ooe (D2)
'
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: The following are the values assigned to the variables:

Scp = 0,0042 kJ/kg.°C
S = 0,01 & kg/sec
S'rv = 1.0 °¢

S'rci = 0.1 °c
STco = 0.1°C

Soo = 0,00025 m.
Snts = 0,0015 m.
A, =TDL,,
(' ]
An
' 1/2
3, ,[(o.ooozs 2,(0.0015 j ]
. A, 0.0202999 0.97155
?a
—-x'-l = 0,0124
n
bo, _[ (0.0120)% (329842 )2 o201 8 )2
T, TTE55aTs -

+((1.0) (-3.325)

(46.75) (43.425) 1n 13735 2

2
,,( (0.1) ,)4( (0.1) ]
(46.75) 1n4§-.6-i;-5- (43.425) 1n, 33502 “ 15

43,125

. %un
. - - 0.0506

n

U, = 8119.55 & 410.85 W/m2,%%
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2. Uncertainty In Inside Heat Transfer Coefficient, h1

The probable error in the inside heat transfer coefficient

is given by:

Shi'K 2 5°1) (o sSRe) (o 3335pr>2

Sci (o 1‘7’(/1/,11‘,) ) 1/2 (D3)
(=) + (e ]
where:
3k = 0.030 W/m.°C
3o, = 0.00025 m.
3pr = 0,10

%(_,‘%) = 0,050

The probable error in the Reynolds number is given by:

1/2
3Re S ¥ (U ¥ /%D (D4)
“Fe '[(E‘) *('ﬁ') *r)

where,
1/2

e ey L () ]
/2
. [(0.01)2 + (42:9}40;00025) f]l

= 0.0278
Since di= 0.15 kg/m.hr. then

42 dz
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.[ (0.0278) 2 *(T:gi'ﬁ'm‘; *('g':'g'gg%'g')z ]

= 0.0547

o7

Re = 116975 & 6399
The probable error in the coefficient Cy is given by:
1/2

%c S 2
Slope Ak (D6)
e[ Ge) *Cgteme) ()]
where
%D = 0.00025
o]
Sk = 0.030 W/m.°c
Sslope = 0,035 slope
dcy 0.00025 ¥ 2 ./0.030 1/2
rumi A\ + (0.035) nmmf
§c
—i’ 0006
Cs
C., = 0.0413987 % 0.00248

Using the above information, the probable error in the

inside heat transfer coefficient can be calculated as:

%h 2 2
0.030 0.00025
-HI- [ ) ( ) + (0.8x0.0547)
) 1/2
#(Q:323xl0 f (0.06)2 +(Q:d4x0.050 ]
o,
‘ . —1 = 0.0894
I, hy
; h; = 28693 t 2565 W/m?, O
L
]
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3. Uncertainty In The Outside Heat Transfer Coefficient, ho

The probable error in the outside heat transfer

coefficient is given by:

2 2
Sho . r SUn . SRW ]
‘ﬁb '
D D
271 0 s) (D7)
oy (o - ™Ry (oo - ™ - 5
i
2 1/2
*fﬁﬂﬁ hy ]
D,
1 o)
- Rw =
o, D;h;
where:
Su,
Shi
-E; = (,0894, and

Assuming 9Rw = 0.10Rw, then eRw = 2.45::].0"6 m2 °c/w
D
1 0 -5 20
Also, (== = Rw = = 6,1907x10 mn“. C/W
(Un Diﬁi)

with this information:

2 2

E;g - [ 0.0506 ']+ [ 2.45%10~° ]

° (8119.55)(6.1907x1o'5) 6.1907x10"

2 1/2
*,[ 0.0000368) (0.0894) ]
6.1907x10"3

5ho

-]

hy =16153%1955 W /m2C
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4. Uncertainty In Tube Performance Factor, 2j/f

2/3

Since the Colburn Analogy defines j as StPr . the

probable error in the Tube Performance Factor 2j/f is

given by: ) 5 5 1/2
me ) <% B0 o(%) )
where
§§_§ [(Suu SPe”f (BPr

) 1/2
L[ Gy o) ()]

Assuming AP, = 0.02 Apts, bp= 0.010 the following

on

numerical values result:

2

i‘;—-[ (0.02)2 + (2x0.0278)32 +(°'°°15 ) + (0.01)2
2 172
+ (9200025 ) }
[ ]
iﬁ-- 0.061
2 2 12

%N:: .[ (0.105)2 +(3:00028 ) (5030 ) ]
51’1‘% = 0.116
; , /2
—3{- .[( 0.116)2 + (0.0547)2 +(3%5%g. ) ]
%& = 0.129

e s 5 Ol g

(D8)

(D9)

(D10)




2 1/2

| 2 2
Eg{, - [ (0.129) +(§-x-578-5712) + (0.061 }

§;§§ = 0.143

TPF = 1,75256 t 0.2506

5. Uncertainty In The Area Ratios

(a) Ry = 0

Using equation (26) the probable error in the area

ratio ( Rext = 0) is given by:
2 2 12
B(a/ag) [/ oNu N SNua> ] (o12)
A 7A Nu Nu
a’“s s a
where
QNu
a
N, = 0.116
in addition, from equation (28),
2 2
®Re %f SRe
s 1 3 1 %pr
Re, [( +(+ s> )1/2
s(p/,uw) N |2
1l a
+(0.o7 ) (5———Nu& ) ]

2
[(;- x 0. 061) (2 x 0. 0547) "(‘F . 10 )
2 2 /2
s (0.07 x 580 ) +( x 0.116 ) ]

0.105
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and using equation (27)
2 172

2 2
SNu SRe i - > (U/u)
o, =[ (0-8 a2 ) {} =) +(°-14x—(wﬂﬁ’§))]

(D13)

1/2
2 2
o x 2238 ) v (0010 x 28500 ) |

dNu 2

Nus

S[ (0.8 x 0.105)

SNus

Nus

= 0.0844

1/2

%(a,/a) 2 2
= [ (0.0844) + (0.116) ]
(3,/A,)

- (A_/a)
? a_s = 0.143
(A,/ Ag)

Ba/Ag(Raxt=0) = 0.55962 + 0.08
(b) Roxt ¥ 0
From equation (32), the probable error in the area ratio

(Rext#O) is given by:

2 2 /2
d(a,/a,) ’[(Sus ) +(§12 ) ] (D14)
(3,7A.) Ug u,
i . where:
;. EU‘ = 0,0506
. a
+

and from equation (33)
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Equation (29) can be used as follows:

1/2
2 2 2 2
) R 5D, 2 ®
e G G () (%) ] o-16)
1/2
vy ? /0.00025 ’ 0.5
"v-s’[‘°-1°5’ (oomzs-) *+ ©-o + (r3ierer) ]

, 1/2
®(A_/A ) 2
. [(% x 0.115 ) + (0.0506) ]

aAs

2(a,/A,)
m——r— = 0.077

GAS

Aa/As (Rext# 0) = 0.758 ¢ 0.058
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